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Abstract. Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices
such as the light-cone gauge entails the emergence of troublesome poles of the type (k · n)−α in the
Feynman integrals. These come from the boson field propagator, where α = 1, 2, · · · and nµ is the external
arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle in the computation
of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands
with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the
subject of research over decades, and several prescriptions have been suggested and tried in the course
of time, with failures and successes. However, a more recent development at this fronteer which applies
the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether
dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this
new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it
can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach
to separate pole products of the type (k · n)−α[(k − p) · n]−β (β = 1, 2, · · ·). In this work we demonstrate
how all this can be done.

1 Introduction

The light-cone gauge for gauge field theories is probably
one of the most widely used among the algebraic non-
covariant gauges. Its popularity has known ups and downs
along its history. Among the ups are that the emerging
propagator has a deceivingly simple structure compared
to other non-covariant choices, the decoupling of Faddeev–
Popov ghosts from the physical fields, and the possibil-
ity of describing and modeling complex supersymmetric
string theories in it. The ugly side of the coin is repre-
sented by the subtle (k · n)−α singularities present in all
the physical amplitudes described within it. Such a com-
plication demanded ad hoc prescriptions to handle the sin-
gularity in a mathematically consistent way. Apart from
the fact that such an expedient has to applied by hand,
it was soon realized that it was not enough to be math-
ematically well-defined; it had to be physically consistent
as well. Thus, not any prescription is suitable, but only
causal prescriptions are eligible for the light-cone gauge.

Probably the major breakthrough in recent years along
this line is the realization that D-dimensional Feynman
integrals can be analytically continued to negative dimen-
sions to be performed there and then can be brought back
to a positive dimensionality [1,2]. Negative dimensional in-
tegration method (NDIM) is tantamount to the perform-
ing of fermionic integration in positive dimensions [3]. This
can be applied to light-cone integrals with surprising ef-
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fects. No prescription is called for in the computation [4]
and moreover, as shortly can be seen, it can dispense alto-
gether with the necessity of partial fractioning products of
gauge-dependent poles [5], a condition sine qua non when
one resorts to the use of prescriptions.

In this work we shall demonstrate the two surpris-
ing features of NDIM when employed in the light-cone
context: no prescriptions and no partial fractionings are
needed. Our lab-testing is performed taking the simplest
scalar and tensorial structures for one-loop integrals.

2 One-loop light-cone gauge integrals

First of all, let us make things more concrete, by analyzing
the framework of vector gauge fields, e.g. the pure Yang–
Mills fields, where, after taking the limit of a vanishing
gauge parameter, the propagator reads

Dab
µν(k) =

−iδab

k2 + iε

[
gµν − nµkν + nνkµ

k · n

]
, (1)

where (a, b) are the gauge group indices, nµ is the arbi-
trary and constant light-like four-vector which defines the
gauge, n · Aa(x) = 0; n2 = 0. This propagator generates
D-dimensional Feynman integrals of the following generic
form:

Ilc =
∫

dDki

A(kj , pl)
f(kj · n∗, pl · n∗)
h(kj · n, pl · n)

, (2)

where pl labels all the external momenta, and n∗
µ is a

null four-vector, dual to nµ. A conspicuous feature that



362 A.T. Suzuki, A.G.M. Schmidt: Prescriptionless light-cone integrals

we need to note first of all is that the dual vector n∗
µ,

when it appears at all, it does so always and only in
the numerators of the integrands. And herein comes the
first seemingly “mysterious” facet of the light-cone gauge.
Why is it that from a propagator expression like (1), which
contains no n∗ factors there can arise integrals of the form
(2), with n∗ factors prominently seen? Again, this is most
easily seen in the framework of definite external vectors n
and n∗. An alternative way of writing the generic form of
a light-cone integral is

Iµ1···µn

lc =
∫

dDki

A(kj , pl)
g(kµj

j , pµl

l )
h(kj · n, pl · n)

, (3)

where the numerator g(kµj

j , pµl

l ) defines the tensorial
structure in the integral. For a vector, we have kµ =
(k+, k−,kt), where k+ = 2−1/2(k0 + kD−1) and k− =
2−1/2(k0−kD−1). If we choose definite n and n∗ such that
nµ = (1, 0, · · · , 1), and n∗

µ = (1, 0, · · · ,−1), this allows us
to write k+ ≡ k · n and k− ≡ k · n∗. We have therefore
traced the origin for the numerator factors containing n∗.
We would like to emphasize here that the presence of this
n∗ in the numerators of integrands has nothing whatso-
ever to do with some kind of prescription input. It is rather
an intrinsic feature of the general structure of a Feynman
integral in the light-cone gauge.

Of course, for practical reasons we illustrate the NDIM
methodology picking up only a few of the scalar, vector
and second-rank tensor one-loop integrals. So, we shall be
considering the following:

T1(i, j, l) =
∫

dDqN(q), (4)

Tµ
1 (i, j, l) =

∫
dDqqµN(q), (5)

Tµν
1 (i, j, l) =

∫
dDqqµqνN(q), (6)

where
N(q) ≡ [(q − p)2i](q · n)j(q · n∗)l

and
T2(i, j, l, m) =

∫
dDqR(q), (7)

Tµ
2 (i, j, l, m) =

∫
dDqqµR(q), (8)

Tµν
2 (i, j, l, m) =

∫
dDqqµqνR(q), (9)

where

R(q) ≡ [(q − p)2i](q · n)j [(q − p) · n]l(q · n∗)m.

In the first three type T1 integrals, after they are com-
puted in NDIM, only the exponents (i, j) will be analyti-
cally continued to allow for negative values, since the orig-
inal structure of the Feynman integral demands an expo-
nent l ≥ 0. Similarly, for the last three type T2 integrals
only the exponents (i, j, l) will be analytically continued

to negative values, whereas m ≥ 0. We strongly empha-
size this point in view of the fact that we must respect
the very nature of the original structure for the light-cone
integrals, where factors of the form (q · n∗) never appear
in the denominators.

Observe that we are not invoking any kind of prescrip-
tion for the (q ·n)j factors to solve the integrals in NDIM,
since before analytic continuation j is strictly positive and
there are no poles to circumvent! This is the beauty and
strength of NDIM! Neither are the (q · n∗)l numerator
factors due to some sort of prescription input as they
are, e.g., in the Mandelstam–Leibbrandt (ML) treatment,
where one makes the substitution [6–11]

M =
∫

dDq

(q − p)2(q · n)
ML−→

∫
dDq(q · n∗)

(q − p)2 [(q · n)(q · n∗) + iε]
. (10)

Let us then evaluate the integrals using the NDIM ap-
proach. In fact, our first integral T1 has already been cal-
culated in great detail in our previous paper [4] the result
of which is

TAC
1 (i, j, l) = πωχi+ω(p · n)j(p · n∗)l

× (−i|2i + ω)(−j| − i − ω)
(1 + l|i + ω)

, (11)

where
χ ≡ 2p · np · n∗

n · n∗ ,

and the superscript “AC” means that the exponents (i, j)
were analytically continued to allow for negative values,
ω = D/2 and we use the Pochhammer symbol,

(a|b) ≡ (a)b =
Γ (a + b)

Γ (a)
. (12)

Observe that l must take only positive values or zero since
the Pochhammer symbol containing Γ (1 + l) was not an-
alytically continued.

Consider now the second integral, the vectorial one,
given in (5). For this case, let

Gµ =
∫

dDqqµ

×exp
[−α(q − p)2 − β(q · n) − γ(q · n∗)

]
. (13)

Introducing the standard trick of substituting the qµ fac-
tor for a derivative in pµ [12], we obtain

Gµ =
(π

α

)ω e−αp2

2α

× ∂

∂pµ
exp

[
αp2 +

βγ

2α
(n · n∗) − βp+ − γp−

]

=
(

pµ − β

2α
nµ − γ

2α
n∗µ

)
G0, (14)
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where p+ = p ·n and p− = p ·n∗, as usual in the light-cone
notation [6,7]. Also, let us define

G0 ≡
(π

α

)ω

exp
[
βγ

2α
(n · n∗) − βp+ − γp−

]
. (15)

Now, Taylor expanding the exponential in (13),

Gµ =
∞∑

i,j,l=0

(−1)i+j+lαiβjγl

i!j!l!
Tµ

1 (i, j, l), (16)

and following the steps for the NDIM calculation [1] we
finally get

Tµ,AC
1 (i, j, l) = V µ

1 TAC
1 (i, j, l), (17)

where

V µ
1 ≡ pµ −

[
(i + ω)p−

(1 + i + l + ω)(n · n∗)

]
nµ

−
[

(i + ω)p+

(1 + i + j + ω)(n · n∗)

]
n∗µ. (18)

This result is in Euclidean space and it is valid for a pos-
itive dimension (D = 2ω > 0), negative exponents (i, j)
and for l ≥ 0.

The second-rank tensor integral in (6) can be evaluated
in a similar way. The only thing that need to be taken into
account is that now a second derivative is called for and
the calculation becomes lengthier. We only quote the final
result:

Tµν,AC
1 (i, j, l) = V µν

1 TAC
1 (i, j, l), (19)

where

V µν
1 ≡ pµpν −

[
(i + ω)p+p−

(1 + i + j + ω)(1 + i + l + ω)(n · n∗)

]
gµν

−
[

(i + ω)p−

(1 + i + l + ω)(n · n∗)

]
(pµnν + pνnµ)

−
[

(i + ω)p+

(1 + i + j + ω)(n · n∗)

]
(pµn∗ν + pνn∗µ)

+
[

(i + ω)(1 + i + ω)p+p−

(1 + i + j + ω)(1 + i + l + ω)(n · n∗)2

]

×(nµn∗ν + nνn∗µ) (20)

+
[

(i + ω)(1 + i + ω)(p−)2

(2 + i + l + ω)(1 + i + l + ω)(n · n∗)2

]
nµnν

+
[

(i + ω)(1 + i + ω)(p+)2

(2 + i + j + ω)(1 + i + j + ω)(n · n∗)2

]
n∗µn∗ν .

It can be noted that for the particular case of i = j = −1
the pole piece for ω → 2 only arises in the scalar integral
factor TAC

1 (i, j, l); see (11).
Now, let us consider the integrals {T2}. These contain

two scalar products with nµ, but again they are harmless
in the NDIM approach because their exponents, before
analytic continuation, are positive. However, in the usual

positive dimensional approach, such factors can become
singular and prescriptions become a necessity. Yet pre-
scriptions cannot handle products; one needs to use partial
fractioning first. Thus, the recourse is to use the so-called
“decomposition formulas” such as (see, for example, [6,
13])

1
(k · n)(p − k) · n

=
1

p · n

[
1

(p − k) · n
+

1
k · n

]
, p·n 6= 0,

(21)
NDIM does not require any of such partial fractionings;
it can handle products at the same time. Not only that:
NDIM can handle any power of these products simultane-
ously, i.e., factors of the form (k ·n)−α[(p−k) ·n]−β , with
(α, β = 2, 3, · · ·) which, of course, become more strenu-
ously difficult to handle by partial fractioning the higher
the power we have.

To evaluate T2 using NDIM, let us then consider the
Gaussian-like integral,

G2 =
∫

dDqexp
[−α(q − p)2 − βq · n

−γ(q − p) · n − δq · n∗] , (22)

which yields

G2 =
(π

α

)D/2
exp

(
−βp+ − δp− +

βδ

2α
n · n∗ +

γδ

2α
n · n∗

)
.

(23)
On the other hand, a direct Taylor expansion of (22) yields

G2 =
∞∑

i,j,l,m=0

(−1)i+j+l+m αiβjγlδm

i!j!l!m!
T2(i, j, l, m). (24)

Comparing both expressions and solving for T2(i, j, l, m)
we get a unique solution for a system of 4 × 4 linear alge-
braic equations [2], which analytically continued to posi-
tive dimension and negative values for (i, j, l) finally gives

TAC
2 (i, j, l, m) = πωχi+ω(p+)j+l(p−)m

× (−i|2i + l + ω)(−j| − i − l − ω)
(1 + m|i + ω)

.(25)

Again, the superscript “AC” means that (i, j, l) is strictly
negative and m ≥ 0.

With the help of (23) it is easy to solve the two re-
maining integrals. The final results we quote here:

Tµ,AC
2 (i, j, l, m) = V µ

2 TAC
2 (i, j, l, m), (26)

where

V µ
2 ≡ pµ −

[
(i + ω)p−

(1 + i + m + ω)(n · n∗)

]
nµ

−
[

(i + l + ω)p+

(1 + i + j + l + ω)(n · n∗)

]
n∗µ (27)
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and
Tµν,AC

2 (i, j, l, m) = V µν
2 TAC

2 (i, j, l, m), (28)

where

V µν
2 ≡ pµpν

−
[

(i + l + ω)p+p−

(1 + i + j + l + ω)(1 + i + m + ω)(n · n∗)

]
gµν

−
[

(i + ω)p−

(1 + i + m + ω)(n · n∗)

]
(pµnν + pνnµ)

−
[

(i + l + ω)p+

(1 + i + j + l + ω)(n · n∗)

]
(pµn∗ν + pνn∗µ)

+
[

(i + l + ω)(1 + i + ω)p+p−

(1 + i + m + ω)(1 + i + j + l + ω)(n · n∗)2

]

×(nµn∗ν + nνn∗µ)

+
[

(i + ω)(1 + i + ω)(p−)2

(2 + i + m + ω)(1 + i + m + ω)(n · n∗)2

]
nµnν

+
[

(i + l + ω)(1 + i + l + ω)(p+)2

(2 + i + j + l + ω)(1 + i + j + l + ω)(n · n∗)2

]

×n∗µn∗ν . (29)

Finally, before closing this section, let us analyze (7) with
momentum shift q = p − k, so that

T2(i, j, l, m) = (−1)j+l+mτ2(i, j, l, m), or

τ2(i, j, l, m) = (−1)−j−l−mT2(i, j, l, m), (30)

where

τ2(i, j, l, m) =
∫

dDkk2i[(k − p) · n]j(k · n)l[(k − p) · n∗]m.

(31)
We can easily write down the following results:

τµ
2 = pµτ2 − (−1)−j−l−mTµ

2 , (32)

and

τµν
2 = −pµpντ2 + pµτν

2 + pντµ
2 + (−1)−j−l−mTµν

2 . (33)

The particular cases for T1, T2 and τ2 such as
T1(−1,−1, 0), T2(−1,−1,−1, 0), etc., can be worked out
from the general expressions. All the above results are in
agreement with the ones tabulated in [6,7,14].

3 Discussion and conclusion

NDIM is a technique wherein the principle of analytic con-
tinuation plays a key role. We solve a “Feynman-like” inte-
gral, i.e., a negative dimensional loop integral with prop-
agators raised to positive powers in the numerator and
then analytically continue the result to allow for negative
values of those exponents and for a positive dimension.

In positive dimensions, Feynman integrals for covari-
ant gauge choices can be worked out with a variety of
methods. However, when we work in the light-cone gauge,

things become more complicated by virtue of the presence
of unwieldy gauge-dependent singularities. At this point
NDIM turns out to have a surprising effect: propagators
raised to positive powers in the “Feynman-like” integrals
do not have poles of any kind to trouble us. Therefore no
prescription is needed in the NDIM approach, and more-
over, no partial fractioning is necessary. The beauty and
the strength of NDIM to deal with light-cone integrals is
revealed and demonstrated in a marvelous way.

So, we can summarize all this by enumerating the out-
standing features of NDIM:
(1) No prescription at all is required to deal with gauge-

dependent poles of the usual Feynman integrals.
(2) The overall structure of the Feynman integrals in the

light-cone gauge is preserved, i.e., there is no need to
introduce factors of the form q ·n∗ in the denominators
as prescription input.

(3) There is no need to use a parametrization of any kind,
so that there are no parametric integrals to solve.

(4) There is no need to perform integration with split com-
ponents such as in [13], where the integration in space-
time is performed by decomposing d2ωq → d2ω−1qdq4;.

(5) There is no need to resort to partial fractionings such
as (21).

(6) The final result is obtained for arbitrary negative expo-
nents of propagators, so that special cases of interest
are all contained therein.

(7) The final result is already within the dimensional reg-
ularization context.

In this work we calculated integrals – scalar, vector, and
second-rank tensor ones – pertaining to light-cone gauge
with arbitrary exponents of the propagators and arbitrary
dimension. Our results given in (11), (17), (19), (25), (26),
(28), (30), (32) and (33) can be worked out for particular
values for the exponents and compared to those existing
in the literature. They can be checked to be in agreement.

But beyond doubt, the most outstanding conclusion
that we can draw from this exercise is that no prescrip-
tion was required to tackle the light-cone singularities. Of
course, it is a matter of straightforward generalization that
all other non-covariant gauge choices will follow suit.
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